A-priori-Verteilung
Die A-priori-Verteilung ist ein Begriff aus der bayesschen Statistik. Vorlage:Redundanztext
Definition
Folgende Situation ist gegeben: ist ein unbekannter Populationsparameter, der auf der Basis von Beobachtungen einer Zufallsgröße geschätzt werden soll.
Gegeben sei eine Verteilung für den Parameter , die das Wissen über den Parameter vor der Beobachtung der Stichprobe beschreibt. Diese Verteilung wird A-priori-Verteilung genannt.
Weiterhin sei die bedingte Verteilung der Stichprobe unter der Bedingung gegeben, die auch als Likelihood-Funktion bekannt ist.
Aus der A-priori-Verteilung und der Likelihood-Funktion kann mit Hilfe des Satzes von Bayes die A-posteriori-Verteilung berechnet werden, welche grundlegend für die Berechnung von Punktschätzern (siehe Bayes-Schätzer) und Intervallschätzern in der bayesschen Statistik (siehe Glaubwürdigkeitsintervall) ist.
(Nicht-)informative A-priori-Verteilungen
Eine nichtinformative A-priori-Verteilung ist als eine A-priori-Verteilung definiert, die keinen Einfluss auf die A-posteriori-Verteilung hat. Dadurch erhält man eine A-posteriori-Verteilung, die identisch mit der Likelihood-Funktion ist. Maximum-a-posteriori-Schätzer und Konfidenzintervalle, die mit einer nichtinformativen A-priori-Verteilung gewonnen wurden, sind daher numerisch äquivalent zu Maximum Likelihood-Schätzern und frequentistischen Konfidenzintervallen.
Eine informative A-priori-Verteilung liegt in allen anderen Fällen vor.
Der Begriff der nichtinformativen A-priori -Verteilung sei an einem Beispiel erläutert: Die Zufallsgröße Y sei der mittlere Intelligenzquotient in der Stadt ZZZ. Aufgrund der Konstruktion des Intelligenzquotienten ist bekannt, dass Y normalverteilt ist mit Standardabweichung 15 und unbekanntem Parameter . An einer Stichprobe von N Freiwilligen wird der Intelligenzquotient gemessen. In dieser Stichprobe wird ein arithmetisches Mittel von 105 beobachtet.
Eine nichtinformative A-priori-Verteilung ist in diesem Fall gegeben durch
- ,
wobei eine positive, reelle Zahl ist. Auf diese Weise erhält man als A-posteriori-Verteilung eine Normalverteilung mit Mittelwert 105 und Standardabweichung . Der Maximum a posteriori-Schätzer für den Mittelwert ist dann 105 (i.e.: das arithmetische Mittel der Stichprobe) und somit identisch zum Maximum-Likelihood-Schätzer.
Eigentliche vs. uneigentliche A-priori-Verteilungen
An obigem Beispiel kann ein Problem illustriert werden, dass häufig bei der Verwendung nichtinformativer A-priori-Verteilungen auftritt: definiert eine sogenannte uneigentliche A-priori-Verteilung. Uneigentliche A-priori-Verteilungen sind dadurch gekennzeichnet, dass das Integral der A-priori-Verteilung größer als 1 ist. Daher sind uneigentliche A-priori-Verteilungen keine Wahrscheinlichkeitsverteilungen. In vielen Fällen kann jedoch gezeigt werden, dass die A-posteriori-Verteilung auch bei Verwendung einer uneigentlichen Verteilung definiert ist. Dies trifft zu, wenn
für alle gilt. Eine eigentliche A-priori-Verteilung Fehler beim Parsen (⧼mw_math_mathml⧽: Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p(\theta ) } ist dadurch definiert, dass sie unabhängig von den Daten ist und dass ihr Integral den Wert 1 ergibt.
Konjugierte A-priori-Verteilungen
A-priori- und A-posteriori-Verteilung sind konjugiert für eine gegebene Likelihood-Funktion, wenn sie den gleichen Verteilungstyp besitzen.
Ein Beispiel hierfür ist das Binomial-Beta-Modell: sei eine binomialverteilte Zufallsgröße mit Erfolgswahrscheinlichkeit als Parameter. In Einzelversuchen werden Erfolge beobachtet. Als A-priori-Verteilung für wird eine -Verteilung auf verwendet. Unter diesen Voraussetzungen ist die A-posteriori-Verteilung eine -Verteilung.
Ein weiteres Beispiel ist das Update eines normalverteilten Priors mit einer gaußförmigen Likelihood-Funktion. Die A-posteriori-Verteilung ist dann ebenfalls eine Normalverteilung.
Literatur
- James O. Berger: Statistical decision theory and Bayesian analysis. Springer Series in Statistics, Springer-Verlag, New York Berlin Heidelberg 1985. ISBN 0-387-96098-8
- Andrew Gelman et al.: Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton London New York Washington D.C. 2013. ISBN 978-1439840955